当前位置: 首 页 - 科学研究 - 学术报告 - 正文

304am永利集团、所2022年系列学术活动(第146场):练恒 副教授 香港城市大学

发表于: 2022-09-19   点击: 

报告题目:Title: Distributed estimation of support vector machines for matrix data

报 告 人: 练恒 副教授 香港城市大学

报告时间:2022年9月21日 星期三14:30-15:30

报告地点:腾讯会议:496457998

校内联系人:赵世舜 zhaoss@jlu.edu.cn


报告摘要:Discrimination problems are of significant interest in the machine learning literature. There has been growing interest in extending traditional vector-based machine learning techniques to their matrix forms. In this paper, we investigate the statistical properties of the nuclear-norm-based regularized linear support vector machines, in particular establishing the convergence rate of the estimator in the high-dimensional setting. Furthermore, within the distributed estimation paradigm, we propose a communication-efficient estimator that can achieve the same convergence rate. We illustrate the performances of the estimators via some simulation examples and an empirical data analysis.


报告人简介:练恒,现任香港城市大学数学系副教授,于2000年在中国科学技术大学获得数学和计算机学士学位,2007年在美国布朗大学获得计算机硕士,经济学硕士和应用数学博士学位。先后在新加坡南洋理工大学,澳大利亚新南威尔士大学,和香港城市大学工作。在高水平国际期刊上发表学术论文30多篇,包括《Annals of Statistics》、《Journal of the Royal Statistical Society,Series B》、《Journal of the American Statistical Association》、《Journal of Machine Learning Research》、《IEEE Transactions on Pattern Analysis and Machine Intelligence》. 研究方向包括高维数据分析,函数数据分析,机器学习等。